Standardization of Death Rate: Implications for Variability in Mortality and Age-Distribution of Lassa fever in Ondo State, Nigeria. Matthew Temitope Oluwole^{1,2}, Stephen Oyegoke Fagbemi¹, Gboyega Adekunle Famokun^{1,2}, Ayokunle Orimolade¹, Aderonke Tolulope Fagbemi³, Ibraheem Adebayo⁴ Funmilola Olanike Adeolu¹, Bakare Adebayo Matthew¹ Igbodo Gordon^{2,5} ¹State Ministry of Health (SMOH), Ondo, Nigeria. ²Nigeria Field Epidemiology and Laboratory Training Programme (NFELTP), Abuja, Nigeria. ³Department of Community Health, University of Medical Sciences, Ondo, Nigeria. ⁴World Health Organization, Ondo State Field Presence Nigeria. ⁵Nigeria Centre for Disease Control and Prevention (NCDC), Abuja # Background - Lassa fever (LF) remains a significant public health threat due to burden of infection and outbreak overwhelming the health system. - Ondo State since 2016 has persistently recorded Lassa fever, having the highest yearly incidence and pronounced mortality. - This study aim is to gain insights into Lassa fever mortality (death) in Ondo State. # Methods We conducted a retrospective review of disease surveillance data and mortality register from 2019 – 2024. CONFERENCE Abstract ID: ELIC2025242 - WHO World Standard Population Distribution, based on world average population between 2000 - 2025. - Poisson distribution parameter (x²/v) was used to summarize variation of Lassa fever mortality. - The U.S. NCHS framework was used to standardize mortality statistics and generate conservative estimate across age groups. - We employed Population projection model (exponential model) to compute the life expectancy. Fig. 1: Map of Nigeria and the Study Area ### Results ## Direct standardization-Age adjusted rate for mortality Population strata of Lassa fever: Ondo State 2019 - 2024 | | Study
Population | | Standard
Population | . Age- | Age- | Variability and Control for differences in Age-group | | | | |--|--|---|---------------------------------------|------------------------------|-----------------------------|--|--|-----------------------------------|--| | Age-
group | Death | Population | (WHO
World,
2000-2025) | specific
death
rate | adjusted
death
rate⁵ | Standard
Error of
percent ⁴ | Relative
Standard
Error ² | Relative
CI width ³ | 95-percent ⁶
confidence limits | | | | | | ri = | Ei = ri * | √ Wsi²* | RSE=(1/ √ di) | width/ <i>Ei</i> | | | | di | pi | Pi | di/pi | Pi | Ri²/Di | *100 | *100 | % (95% CI) | | 0-4 | 18 | 748184 | 8860 | 2.41 | 0.21 | 5.0 | 23.6 | 92.4 | - | | 5-14 | 10 | 1493081 | 17290 | 0.67 | 0.12 | 3.7 | 31.6 | 124.0 | - | | 15-24 | 30 | 1244666 | 16690 | 2.41 | 0.40 | 7.3 | 18.3 | 71.6 | 0.4 (0.3 - 0.5) | | 25-34 | 46 | 908551 | 15540 | 5.06 | 0.79 | 11.6 | 14.7 | 57.8 | 0.8 (0.6 - 1.0) | | 35-44 | 60 | 622559 | 13740 | 9.64 | 1.32 | 17.1 | 12.9 | 50.6 | 1.3 (1.0 – 1.7) | | 45-54 | 53 | 430896 | 11410 | 12.30 | 1.40 | 19.3 | 13.7 | 53.9 | 1.4 (1.0 – 1.8) | | 55-64 | 47 | 224687 | 8270 | 20.92 | 1.73 | 25.2 | 14.6 | 57.2 | 1.7 (1.2 – 2.2) | | 65-74 | 39 | 123486 | 5170 | 31.58 | 1.63 | 26.2 | 16.0 | 62.8 | 1.6 (1.1 – 2.1) | | 75-84 | 18 | 61694 | 2430 | 29.18 | 0.71 | 16.7 | 23.6 | 92.4 | - | | 85+ | 18 | 34107 | 640 | 52.78 | 0.34 | 8.0 | 23.6 | 92.4 | - | | Total | 339 | 5891912 | 100000 | | | 31.3 | 3.61 | 63.4 | 7.3 (5.2 - 9.4) | | ¹ Crude | Rate pe | er 100,000 | | 5.75 | | | | | | | Standardized Rate per 100,000 | | | | | 8.80 | | | | | | ² Data are
³ Relative | e statistica
CI width i
d error of | lly unreliable bed
s greater than 13 | cause sample size
80%. Estimate we | e was <20 ev
ould be supp | vent or relativ
oressed. | e Standard Err | | i), Age-adjusted | ion.
rate would be suppressence of the age-specific | mortality recorded showed across all age groups pronounced variations. 6NOTES: CI is confidence interval. The proportion estimate and its lower and upper confidence bounds, respectively, Relative Standard Error and Relative CI width are expressed in percentage points. Numbers in the table are subject to rounding. NOTE: Results were interpreted based on U.S National Centre for Health Statistics (NCHS) framework SOURCE: Surveillance database and mortality register The differences were adjusted for to generate a prevalence estimate of 7.3% (5.2 - 9.4) around the parameter. Ondo State growth rate for LF shows a decrease in the rate of mortality across all ages; however, the age specific growth rate shows that age 25-29 and 60-64 years are on the rise and tends to double in the year 2030 if the current growth rate persists. Fig 2: Mortality curve of Lassa fever growth rate in Ondo State The life table shows that the life expectancy at birth is 45.93 years ($\ell_x = 9.19$) and that a man aged 15 years has about 61.5% chances of dying before his 60th birthday. # **Conclusions and Recommendations** We found an unusual increase in the confirmed cases and significant variation in deaths among the age groups, with related reduction in life expectancy. Hence, enhanced disease surveillance and early medical countermeasures might minimize the mortality rates from LF outbreak. wole4christ@gmail.com. +2347035729547, +2349161689330. Linkedln: @matzey01