

# Comparative Analysis of Human-to-Human Transmission in Two Different Population Settings (Community and

Healthcare): A Mathematical Modelling Approach

Sylvia Ezenwa-Ahanene<sup>1 2</sup>, Polycarp Dauda Madaki<sup>1 3\*</sup>, Nwadiuto Chidinma Ojielo<sup>1 4</sup>





#### **Affiliations:**

- <sup>1</sup> Corona Management Systems, Abuja, Nigeria
- <sup>2</sup> Nigeria Centre for Disease Control and Prevention (NCDC), Abuja, Nigeria
- <sup>3</sup> Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa <sup>4</sup> University of Nigeria Teaching Hospital, Enugu, Nigeria

## Background

- Lassa fever (LF) is a viral haemorrhagic disease endemic in West Africa, spread from *Mastomys* natalensis rodents and through human-to-human contact.
- > Annually causes ~300,000 infections and 5,000–10,000 deaths; severe disease has high mortality despite most cases being mild.
- > Community spread occurs during caregiving, burials, and household contact; healthcare spread is linked to poor PPE use, overcrowding, and direct patient contact.
- In Nigeria, high-burden states include Ondo and Edo; medium-burden states include Plateau, Benue, and Kogi; low-burden states include Zamfara, Yobe, and Osun
- > This study applies mathematical modelling to compare LF transmission in community vs healthcare settings to guide targeted control.



## Methods

## **Study Overview**

This cross-sectional analytical study used NCDC surveillance data (2018– 2024) from low-transmission settings. A modified **SEIR model** compared community and healthcare transmission, incorporating intervention effects. Data analysis was conducted using R

and Excel.

#### Workflow:

NCDC Data — Model Development— Parameter Estimation → Scenario Comparison



Figure 2:Schematic description of the mathematical model

## **Key Assumptions**

- Susceptible humans can be infected by exposed individuals.
- Recovered individuals have temporary immunity.
- Mixing is homogeneous within each setting.
- Transmission rates differ between community and healthcare environments.

### Model Equations Human compartment

 $dS_h/dt = \Lambda_h - (\beta_h S_h I_h)$  $/ N_h - \mu_h S_h + \omega_h R_h$  $dE_h/dt = (\beta_h S_h I_h) / N_h$  $-\alpha_h E_h - \mu_h E_h$  $dI_h/dt = \alpha_h E_h - \gamma_h I_h \delta_h I_h - \mu_h I_h$  $dR_h/dt = v_h I_h - \omega_h R_h - \mu_h R_h$ Vector compartment  $dS_v/dt = \Lambda_v - (\beta_v S_v)$  $I_v) / N_v - \mu_v S_v$ 

 $dI_v/dt = (\beta_v S_v I_v) /$ 

 $N_v - \mu_v I_v$ 

## Format: (Community, Healthcare)

 $\beta_{\rm v}$  (0.052, 0.052)

 $\mu_{v}$  (0.003, 0.003)

**Key Parameters** 

 $\mu_h$  (0.000045, 0.000045)

 $\lambda_h$  (4,4)

 $\beta_{\rm h}$  (0.101,0.40)

 $\gamma_h$  (0.05, 0.05)

 $\omega_{\rm h}$  (0.00578, 0.03)

 $\alpha_h$  (0.000904, 0.20)

 $\delta_{\rm h}$  (0.0000904, 0.15)

 $\lambda_{\rm v}$  (0.0159675,0.000045)

## Results

#### **Transmission Dynamics**

The basic reproduction numbers (R<sub>0</sub>) indicate slightly higher Lassa fever transmission potential in healthcare facilities ( $R_0 = 1.9991$ ) compared to community settings ( $R_0 = 1.9822$ ).



Figure 3: Healthcare settings: show faster transmission peaks, driven by close patient contact, poor PPE use, and overcrowding.



Figure 4: Community settings :exhibit slower transmission but still sustain the epidemic, especially with asymptomatic carriers

## **Sensitivity Analysis**

In healthcare settings, human-to-human transmission rate  $(\beta_h)$  had the strongest positive influence, while recovery rate  $(\gamma_h)$ had a strong negative effect.

In community settings,  $(\gamma_h)$  similarly had the greatest negative impact, while other parameters had minimal effect



Figure 5: presents the sensitivity analysis results green bars for parameters that increase  $R_0$  and orange bars for those that reduce  $R_o$ .



Figure 6: Increasing  $\gamma_h$  by 20–40% significantly reduces the number of infectious humans over time Reduced Transmission Rate (Bh) on Infectious Humans

Figure 7: Reducing  $\beta_h$  by 10–20% also markedly lowers transmission

Time (days)

Time (days)

## **Conclusions and Recommendations**

#### Conclusion

- $\triangleright$  Lassa fever transmission is slightly higher in healthcare settings ( $R_0 =$ 1.9991) than in communities ( $R_0 = 1.9822$ ), but both pose serious risks.
- Healthcare spread is driven by close contact and poor PPE use; community spread persists via asymptomatic carriers.
- Reducing transmission rate  $(\beta_h)$  or increasing recovery rate  $(\gamma_h)$ significantly lowers outbreak size.

#### Recommendations

- Healthcare settings: Enforce PPE use, early isolation, and routine HCW screening.
- Communities: Boost awareness, hygiene, and rodent control; expand testing access.
- Policy: Integrate modelling into preparedness plans and strengthen One Health surveillance.

**Contact:** 

Polycarp Dauda Madaki | Corresponding & Presenting Author 

Sylvia Ezenwa\_Ahanene | Principal Author

sylvia.ezenwa-Ahanene@ncdc.gov.ng # +234 803 891 4904











